Die Topologieoptimierung als Teil der Strukturoptimierung hilft Ingenieuren dabei, Produkte bzw. einzelne Bauteile so zu gestalten, dass an sie gestellte Anforderungen optimal erfüllt werden. Das kann beispielsweise eine maximale Steifigkeit bei niedrigem Volumen oder eine maximale Festigkeit bei niedrigem Gewicht sein. Dadurch kann ein großes Einsparpotenzial in Form von weniger Energieeintrag im Herstellungsverfahren des Produkts, weniger Materialeinsatz und weniger Arbeitseinsatz bei der Entwicklung ausgeschöpft werden. Diese Vorteile ermöglichen eine Konstruktion und Produktion, die die Prinzipien der Nachhaltigkeit erfüllen.
Um diese Einsparpotenziale bestmöglich nutzen zu können, findet die Topologieoptimierung in der frühen Konzeptionsphase des Produktentwicklungsprozesses Anwendung. Hier besteht noch eine große Freiheit in den Gestaltungsmöglichkeiten, die später einen großen Einfluss auf die weiteren entstehenden Kosten haben. Gleichzeitig sind die zu diesem Zeitpunkt entstehenden Kosten für Änderungen sehr gering.
Der Aufwand für eine Topologieoptimierung ist sehr niedrig. Zunächst wird vom Anwender definiert, welcher Bauraum für das betrachtete Bauteil zur Verfügung steht. Dann wird angegeben, welche Belastungen an welcher Stelle auf das Bauteil wirken und wo die Gestalt nicht verändert werden soll, z. B. an Bohrungen. Danach kann die Optimierung bereits gestartet werden und die Optimierungssoftware erledigt den Rest.
Je nachdem, welches Verfahren verwendet wird und welches Ziel angestrebt wird, bezieht die Optimierungssoftware aus einer Finiten Elemente Analyse (FEA) die entsprechenden Daten, die zur Weiterverarbeitung benötigt werden. Das können unter anderem Verschiebungen ebenso wie Spannungen im Bauteil sein.
Mit Hilfe der Daten aus der FEA wird die Struktur des Bauteils angepasst, indem der Elastizitätsmodul (E-Modul) der finiten Elemente variiert wird. Dabei soll ein niedriger E-Modul ein Loch darstellen und ein hoher E-Modul die feste Struktur. Mit dieser neuen Verteilung der E-Moduli wird in der nächsten Iteration wieder eine FEA durchgeführt, wobei ein Element mit niedrigem E-Modul ein sehr weiches Verhalten aufweist und somit – quasi wie ein Loch – nicht zur Festigkeit oder Steifigkeit der Struktur beiträgt. Bei manchen Verfahren wird der E-Modul erst mittelbar über eine andere Größe bestimmt. Sämtliche Variablen, die durch den Optimierungsalgorithmus verändert werden, werden als Designvariablen bezeichnet.
Wie der E-Modul angepasst wird, hängt vom Verfahren ab, das verwendet wird. Die existierenden Verfahren lassen sich grob in die beiden Gruppen der mathematischen und empirischen Verfahren gliedern. Bei den mathematischen Verfahren werden die Designvariablen aufgrund einer mathematisch hergeleiteten Gesetzmäßigkeit verändert, was dann zum Optimum führt. Bei empirischen Verfahren werden die Designvariablen hingegen auf der Basis einer Vorschrift verändert, die auf der Vermutung der Optimalität basieren und in der Regel mit wenig Rechenaufwand gute Ergebnisse liefern. In Z88Arion® sind Verfahren aus beiden Gruppen realisiert.